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LETTER TO THE EDITOR

A new efficient method for calculating perturbation
energies using functions which are not quadratically
integrable

L Skála†§ and JČı́žek‡‖¶+∗
† University of Waterloo, Department of Applied Mathematics, Waterloo, Ontario N2L 3G1,
Canada
‡ Institute for Theoretical Chemistry, University Erlangen-Nürnberg, Egerlandstrasse 3, D-91058
Erlangen, Germany

Received 17 November 1995

Abstract. A new approach to calculating perturbation energies of bound states based on the
use of functions which are not quadratically integrable is suggested. The key to the method is
one simple property of the perturbation equations which, to our knowledge, has not been noticed
until know. The use of the resolvent in this method is avoided and the energy spectrum of the
unperturbed Hamiltonian is not needed in the calculation. The resulting method is very simple
and straightforward and gives very accurate eigenvalues and wavefunctions.

In this letter, we are interested in the perturbation theory for the Schrödinger equation

Hψ(x) = Eψ(x) . (1)

Despite the well known formulations which can be found in any textbook on quantum
mechanics [1] there is one property of the perturbation equations which has not, to our
knowledge, been noticed until now. The aim of this letter is to show how this property
can be used for very efficient calculation of the bound-states perturbation energies and
wavefunctions. In this letter, we discuss the one-dimensional Schrödinger equation.

As usual in the perturbation theory, we assume the Hamiltonian, wavefunction and
energy of the form

H = H0 + λH1 (2)

ψ = ψ0 + λψ1 + λ2ψ2 + · · · (3)

and

E = E0 + λE1 + λ2E2 + · · · (4)
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where λ is the perturbation parameter. Using these assumptions in the Schrödinger
equation (1) we get the well known equations forEn andψn

H0ψ0 = E0ψ0 (5)

and

H0ψn +H1ψn−1 =
n∑
i=0

Eiψn−i n = 1, 2, . . . . (6)

To calculate the zero-order energyE0 the Schr̈odinger equation (5) can be solved by
standard methods or by the Taylor series expansion method [2]. The usual numerical
approach is based on choosing some value of the energyE0 and assuming a small value of
the wavefunction at one point representing one boundary condition. From the first boundary
condition, the wavefunctionψ0(x) is calculated by means of the Schrödinger equation (5)
until another pointx0 at which the second boundary condition is to be taken. The energy
E0 is found from the second boundary condition. For the sake of simplicity, we assume
now that the potential inH0 goes to infinity forx → ±∞. In such a case the wavefunction
ψ0(x) goes to zero forx → ±∞ and the boundary conditions are usually taken at points
which are sufficiently far from the minimum of the potential. We assume in this letter that
the second approximate boundary condition applied toψ0 has the form

ψ0(x0) = 0 (7)

wherex0 is a sufficiently large number.
Equations (6) are usually solved in a way similar to that described above with the

boundary conditions of the form

ψn(x0) = 0 n = 1, 2, 3, . . . . (8)

There is, however, a much more advantageous approach described below.
Let us assume that the wavefunctionsψi and perturbation correctionsEi are already

calculated fori = 0, . . . , n − 1. It follows from (6) that the wavefunctionψn depends on
the perturbation energyEn and the coordinatex

ψn = ψn(En, x) . (9)

Here, the perturbation energyEn is taken as a variable in the wavefunctionψn(En, x).
Calculating the derivative ofψn(En, x) with respect to the energyEn we get from (6)

(H0 − E0)
∂ψn(En, x)

∂En
= ψ0(x) n = 1, 2, . . . . (10)

This equation shows that the derivative

∂ψn(En, x)

∂En
= F(x) (11)

is a functionF(x) independent ofEn and n. Integrating this equation we see that the
functionψn(En, x) is a linear function ofEn

ψn(En, x)− ψn(0, x) = EnF(x) . (12)

This is very interesting property since it makes possible to calculate the perturbation energy
En from the equation

En = ψn(En, x)− ψn(0, x)

F (x)
. (13)
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Now we assume that the perturbation energyEn has the value for which the boundary
conditionψn(En, x0) = 0 is obeyed. Takingx = x0 in (13) the resulting remarkably simple
equation for the perturbation energyEn reads

En = −ψn(0, x0)

F (x0)
. (14)

The value ofF(x0) can be most easily calculated from the equation

F(x0) = ψn(En, x0)− ψn(E
′
n, x0)

En − E
′
n

(15)

following from (12). Due to the independence ofF(x) on En and n, En andE
′
n in this

equation can bearbitrary numbers. The most simple result is obtained forEn = 1, E
′
n = 0

andn = 1 when the final expression forF(x0) equals

F(x0) = ψ1(1, x0)− ψ1(0, x0) . (16)

The meaning of the functionF(x) can be clarified in the following way. Assuming that
ψ0 = ψ0(E0, x) and calculating the derivative of (5) with respect toE0 we get

(H0 − E0)
∂ψ0(E0, x)

∂E0
= ψ0(E0, x) . (17)

We see therefore that

F(x) = ∂ψ0(E0, x)

∂E0
(18)

where the derivative is taken at pointE0 for which the boundary conditionψ0(E0, x0) = 0
is satisfied.

This method is a very interesting example of the use of solutions which do not satisfy
the boundary conditions (8) and are not therefore quadratically integrable. Equation (14)
shows that to calculateEn it is not necessary to solve the differential equation (6) and search
for the solution satisfying the boundary conditions (8). To calculateEn it is sufficient to
evaluate the function−ψn(0, x0) and divide it byF(x0). The functionsψn(0, x), ψ1(1, x)
andψ1(0, x) do not, in general, satisfy the boundary conditions (8) and are not quadratically
integrable [3, 4] (see figure 1). Therefore, depending on the value ofx0, values ofψn(0, x0)

andF(x0) may be large. However, the resulting value ofEn as given by (14) may be small.
Due to the simplicity of (14), the calculation of the perturbation energyEn is very fast and
straightforward. If the perturbation energyEn is known the wavefunctionψn can easily be
calculated from (6). We note that the use of the resolvent is avoided in this method and the
energy spectrum of the zero-order HamiltonianH0 is not needed in the calculation.

The method described in this letter has many advantages both from the methodological
and numerical point of view as verified for one-dimensional anharmonic oscillators and
double-well potential problems [2]. In these cases, it was possible to get perturbation
energies and wavefunctions with 50 digits or even higher accuracy and calculate perturbation
corrections to a very high order (n = 200). It appears that this approach is complementary
to techniques for the transformation of the divergent weak coupling perturbation theory to
the convergent strong coupling one [5–8]. From this point of view, the above described
method has an impact on the quantum field theory, namely, in the renormalized version
[9–11]. A detailed report will be given elsewhere [2].

The modification of the perturbation theory presented in this paper is very promising and
we believe that this method can also be used successfully for other potentials and boundary
conditions. However, the most interesting application of this method seems to be to the
perturbation theory of many-dimensional systems.
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Figure 1. Character of the wavefunctionψn(En, x) for different values ofEn. Here,Eexact
n

denotes the exact value ofEn for which the boundary conditionψn(En, x) → 0 for x → ∞ is
obeyed. ForEn 6= Eexact

n , the function is not quadratically integrable.
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